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ABSTRACT

'e?;‘ i 2k Hotelling's T2 procedure for testing the significance of a
mean vector treats all variables symmetrically and may not be
appropriate if the variables carry unequal importance. The step-
down procedure due to J. Roy (1958), a possibly appropriate
alternative, is studied in this paper. An underlying invariance

structure is established and then used to develop a canonical form
for studying the power functions of the two methods. A Monte Carlo

experiment is conducted in this framework and conclusions are ]
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1. Introduction ﬂ\
: 4 The problem of testing the significance of the mean of a random vector

or the equivalent problem of comparing the means of two random vectors arises
in various statistical contexts. The best known solution to the problem is
based upon Hotelling's (1931) T2 test and has been extensively studied for
its optimality properties (Anderson ;958) and used in diverse applications
(Kshirsagar 1972; Morrison 1967; Rao 1973). However, some of the properties
which make Hotelling's T2 -elegant and simple may render it inappropriate in
some applications. For example, the "invariant" Tz-test treats the variables
symmetrically and consequently may be unsuitable if these variables have unequal
Ai importance in the investigation. Yet the alternatives to the Tz—test are very
few. The purpose of this article is to study one such alternative, namely the
step-down procedure, and compare it with Hotelling's Tz solution.

The step-down reasoning for solving multivariate hypothesis testing problems
was formally initiated by Roy and Bargmann (1958) in the context of testing
multiple independence. J. Roy (1958) extended it to the problem of testing a
multivariate general linear hypothesis, which includes Hotelling's problem as a.
particular case. The step-down solutions assume an a priori ordering of the

variables and involve a sequence of tests of significance. The practical

e TR

y importance of the step~down procedure also lies in the fact that it permits
recognition of the unequal relevance of the variables in that they can be ordered

according to their importance and the overall type I error probability can be i

R SR e

distributed suitably between the component tests. From the theoretical standpoint

however very little is known about the step-down tests.

T i S
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In Section 2, we outline the step-down procedure for Hotelling's problem
and describe an invariance structure in which this procedure as well as the Tz-
test are invariant. In Section 3, some properties of step-down procedure for
Hotelling's problem are discussed. Some estimates of the power function of the

step-down procedure based on a Monte Carlo experiment and conclusions are

presented in the final section.

2. Invariance of the step~down procedure

for Hotelling's Tz problem

In canonical form Hotelling's problem is that of testing a null hypothesis

Hy: p = 0 for a p-variate normal population with mean vector y = (ul.uz,...,up)'

and positive definite covariance matrix £, on the basis of a random sample

= n
fi = (xil,...,xip)', demu N se, Rpan > pl o I f = izlfi/n and
n

S= ¢ (x.-i)(x14§)' , then Hotelling's test rejects Ho for large values of
o > T e e
Tz = n(n-l)?' S-Li  where the critical constant for the test is determined by the

-~ -~ -~

fact that under Ho, (n-p)Tz/[p(n-l)] has an F-distribution with p and (n-p)

degrees of freedom.
The step-down procedure proposed by J. Roy (1958) for the MANOVA problem, when

particularized for testing HO: u = 0, consists of a sequence of tests based upon

-~

statistics 2 2
(n-i)(Ti-Ti_l)
Fi = 2 ’ i‘l' eceyp Po (2 1)-
[(n-1)+Ti_l]
2 2 R 2 :
where TO = 0, and 'I.'i denotes Hotelling's T  statistic for testing (ul""'"i) = Q'
based upon the first i variates, i =1,2,...p. The null hypothesis Ho is

rejected as soon as a component test in the sequence shows significance. It is well
known (J. Roy 1958; Roy, Gnanadesikan and Srivastava 1971 [p. 473)) that under HO'

the F's are independently distributed according to F distributions with degrees of

i
freedom 1 and (n-i). Consequently the size @ of the overall procedure is

P
related to the levels of the component tests by (l-a) =« (1-°i)'

a
» i=1
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The well known invariance structure underlying the MANOVA problem (e.g.,

Lehmann 1959; Ferguson 1967) involves the following three groups of transformations:
(i) the translation group which removes the irrelevant observations from consideration,
(ii) the orthogonal groups which reduce the data to the sum of squares and product
matrices H and E due to hypothesis and due to error respectively, and (iii) the
group of premultiplication by nonsingular matrices, which finally yields the
eigenvalues of HE-l as a set of maximal invari;nts. In this invariance fromework
the Tz statistic is maximal invariant for Hotelling's problem and the Tz-test is
best invariant procedure (lehmann 1959, [p. 299]). Alternatively, sufficiency
considerations, instead of the group in (ii), also lead to H and E. 1In the Tz-
case one could dispense with the groups at both the first and the second stages.
based upon the sufficient statistics x and S

0 i =z

which are invariant under transformations x* = d; and S* = CSC', where C is a

-~ -~ -~~~

Thus among all procedures for H

non-singular matrix, the T2 test is known to be UMP (Anderson 1958, ([Thoerem 5.5.1,
p. 115]). Now we show that the step-down statistics are maximal invariants when

the transformation matrices C are restricted to be lower triangular (Theorem 2.1),

and later discuss the nature of the nonnull joint-distribution of these statistics

(Thoerem 2.2).

Theorem 2.1. If Tz denotes Hotelling's T2 statistic for testing

i

"i = ‘"1’"1""'”1)' = 0 based on the first i variates, i = 1,2,...p, where

ul,...,up are the means of the p-variables, then the step-down statistics in (2.1)

are maximal invariants of sufficient statistic (;, S) under the group of

transformations ;; = L;; S* = LSL', where L is a nonsingular lower triangular

-~ - -~

ll 2' -’ ’ 1' 2' ’

remain invariant under nonsingular lower triangular transformations. We now show

that they are maximal invariants. Suppose that two sets of data ;;Sx and ;}s

- - -~
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4
give rise to the same step-down statistics. Let L. and Ly denote lower
L} L] - ]
triangular matirices such that S_ = LL and § =LL , and u =1L lx =
<X IXx <Y Y.y = 2%,
(ul....,up)', v = L;l;'= (vl,...,vp)'. Since both sets of data yield the same
- =y = i i
step~down statistics, we have jélui =j§lv§ . i=1,...,p, Or equivalently
Sl bk e, =] H s -, W M
uy ir L-e.s y =tV i=1,...p. ence v ke y= m ML X, ere M

is a diagonal matrix with either +1 or -1 as the diagonal elements. By taking

L=1L ML;I , we find that ;'= ILx and Sy = LS L', thus completing the proof of

-t e~ -adha

the theorem.
Theorem 2.2. Maximal invariants in the parameter space, under the induced

z 1

group of transformations, are ui ; % i=1,...p. Equivalently, if B is the

lower triangular matrix such that I = BB', and n= B-l u = (nl:nz,...,np)';
then maximal invariants are ni.ni....,n; 5

géggg. The Theorem follows from the above Theorem 2.1, by replacing 'g by
W, and § by L.

Theorem 2.2 implies that the joint distribution of théA;tep—down statistics
involves only ni, i=1,...,p, as the non-centrality parameters, and that the
power function of the step-down procedure for Hotelling's problem depends on these
non-centrality parameters only (Lehmann 1959, [p. 220, Theorem 3]}). Clearly, the
T2 test is also invariant under the transformations considered in Theorem 2.1. Its

P

power depends on n2,...,n2 only through I n? &
1 P i=1 i

Remark 2.1. In the invariance framework, described above, for the MANOVA
problem if the group in (iii) is replaced by the group of nonsingular lower
triangular matrices, then it can be shown that the step-down statistics are

invariant. However, they do not appear to be maximal.

3. Some properties of the step~down procedure

In this section we study the unbiasedness and monotonicity of the power

' function of the step-down procedure.
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of significance with corresponding critical constants ~c1""'cp' then the power

If Fl""'rp are the step-down statistics and o ""’ap are the levels

function is given by

Cl Cp
B = 1 -{ f_w g, (F))g, (F,[F)) ... gp(FlJ FpoeeesFp ))AF)...dF (3.1)

where gi(FilF ) denotes the conditional distribution of Fi given

lpnoopFi_l

Fl""'ri-l under the alternative hypothesis at which g8 is calculated. Then,

we have the following theorem.
Theorem 3.1. The step-down procedure is unbiased, if the component tests are

unbiased.

Proof. Given that the component tests are unbiased, we have

C,
“o

i
f'gi(FilFl,...,Fi_l)dFi 5_(1-ai) for i =1,2,...,p and consequently

.

(l-a) = f (1-a,) 255 !; gi(FilFl""'Fi-l)dFi == 0
Remark 3.1l. Theorem 3.1 holds for the step-down procedure associated with
MANOVA also, where the step-down statistics are independently distributed under
the null hypothesis.
Theorem 3.2. If the component tests are consistent (i.e., the power increases

to one as n + =), then the step-down procedure is consistent for any fixed

alternative hypothesis.
: P
Proof. From (3.1) we have 1 - 8 = 101Y3

of type II error of ith component test. Since the component tests are consistent,

(n), where yi(n) is the probability

Yi (n) 0 as n + », and consequently f =+ 1 . (]
We now consider the case p = 2 for simplicity and discuss some results
related to the power of the step-down procedure.

Theorem 3.3. The power function of the step~down procedure for testing

Hox ‘“1'“2) = (0,0) is an increasing function of “i if "i = 0, and an increasing

function of n: when ni is fixed.

ey
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Proof. By (2.1), F2 has conditionally a non-central F distribution with 4.f.

(1,n~2) and the non-centrality parameter n;/[(n-l) + Fll, it follows that 3

2 £2
I(c,my/[(n-1) + F1) = fo g,(F,|F))ar, (3.2)
is a decreasing function of n:, and increasing function of Fl. Similarly,
<) : T
_( g, (F.)dF., is a decreasing function of n.. -
0 s (i | 1

It follows easily that if n2 =0, I(cz,ni/[(n-l) + Fll) is independent of :

and consequently (3.1) is an increasing function of ni . For a fixed value

g

of n,- I(cz,ni/[(n-l) + Fll) is a decreasing function of n; implying that

(3.1) also is an increasing function of n; . o

ek, o

For general p , the above theorem may be extended as follows:

Theorem 3.4. The power function of the step-down procedure for testing the

hypothesis u = 0, is an increasing function of ni when ni""'“i—l are fixed

2 2
and Migg = =+ = np =0,1i-= 1,7..,p.

The proof is similar to that of Theorem 3.3.
In order to see whether the power function of the step-down procedure is an

increasing function of ni when ni is fixed, we may proceed as follows: If we

denote, &

2
{ gz(leFl-x)sz i = & o

I(x) =
0 , otherwise

’ L]
then E (I(x)) = l-B(n ) as given in (3.1). Let nl and n, be two values of
n suchlthat In | < ln [, and g, (F in ),gl(F zn ) denote the p.d.f. of F,

when nl = "1' and n1 nl respectively. Since the distribution of Pl belongs

to montone likelihood ratio family (Lehmann ([5], p. 68), there exists a point 4

L] " . L]
such that gl(x;nl) > ql(x;nl) if x < d, and ql(x:nl) < gl(x:nl) if x > d. But,
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Bn w(I(x)) - En JN(I(x)) = I(x)[gl(x;nl)-gl(x;nl)]dx

1 1

I(x) [gl(x;nl)-gl(xml)ldx (3.3)

d ' "
- f I(x)[gl(x;nl)-gl(x:nl)]dx
0

If c1 < d, then the first term in the R.H.S. of (3.3) is zero, for which

reason E_ ,(I(x)) < En , (I(x)) and the power at n, will be larger than that at
1 1

”
n{. For cl > d, (3.3) could be positive, in which case the power at nl will be

smaller than the power at n

]
1.

4. A study of the power function by simulation

In this section we describe a sampling experiment which provides an estimate
of the power function of the step-down procedure (of Section 2) for p = 2.
Without any loss of generality we take E = 52 . the identity matrix of order 2,
in which case the power of the invariant procedures depends upon n = ui, and
n; = ui. Consequently we can restrict our attention to non?ﬁggative values of MMy
and observe the behavior of the power as Hy and My change.

The Monte Carlo experiment: The objective of the experiment is to investigate

the -power function of the step-down procedure and compare it with the power function
of Hotelling's Tz procedure. The power of these procedures has been computed for
several values of Y namely - 0.0 (0.1) 1.6, and M, = 0.0 (0.1) 1l.9.

The standard normal deviates are generated on the IBM 360/365 computer at the
University of Rochester using "McGill University random number package" based upon
the technique of Marsaglia [6] for generating standard normal deviates. A random
observation from the bivariate normal population Nz(u,Iz) is obtained by drawing
two random observations from a standard univariate normal population and adding

and 1y to them respectively.

" 2

Test procedures considered in the simulation experiment: For a fixed value of

(ul.uz). the power is estimated on the basis of 3000 samples of size 20, corresponding

s




t9 two values of the level of significance a, namely .01 and .05 . After

each sample of size 20 is drawn, the data are subjected to the following tests of
significance, each of the tests being at the two values of a.
The step-down procedure is applied by setting different values for the levels

of significance «a.,a corresponding to the two component tests, such that

L2

r +r2 P i
(1-a) = (l-€) , (1ma) = (1-¢) B e 8 (4.1)

The correspondence between ai's and ri's is presented in Table 1, with
(rl'rz) taking values (10,1),(4,1),(2,1),(1,1),(1,2),(1,4),(1,10) and ¢ = .01

and .05. The power of a particular procedure at a given value of U is estimated

(TABLE 1 TO GO HERE)

by the propotrtion of times the test rejects Ho in the 3000 trials..

2 2 . .
The power of Hotelling's procedure depends upon My + Hor which is
symmetric in ui and u2. Hence the power is obtained for ul-i uz using the
routine by Bargmann and Ghosh (1964) for calculating the cdf of a noncentral

F~distribution with (2, 18) d.f. and is presented in Table 2 corresponding to

a = .01, and .05
(TABLE 2 TO GO HERE)
Results: Several conclusions may be drawn from Table 2 which presents the

2 i : ;
exact power function of Hotelling's T  based on nancentral F distribution and

Tables 3-8 which present some of the estimates of power function of the step-down

procedure based on simulation study.

(1) Wwhen rl = rz. i.e., ul = az the simulation indicates a slight

superiority of the step-down procedure over the Tz-test along the corrdinate axes

i.e., "1 =0 or u2 = 0. On the other hand Tz-test dominates the step-down

procedure along the equiangular line M= Uy

(2) As observed in Thoerem 3.3, the power of the step-down procedure
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corresponding to each value of (rl,rz). is an increasing function of ¥y if

"2 = 0, and an increasing function of uz when Ul is fixed, with only a rew

insignificant exceptions.
(3) The power of the step-down procedure at (ul.uz) appears to be an

increasing function of “l if Ul o uz, and a decreasing function of °l if

Ul S Uz. Note that for a fixed ¢, “l may be increased either by increasing r

for a fixed value of rys Or by decreasing x, for a fixed value of - (See Table 1).

, a selection of (rl, r2) seems possible such that the power

1

(4) When “1 # u2

; 2
of the step~down procedure at (M uz) is larger than that of Hotelling's T

1’
procedure. But when Ul = u2' such a selection of (rl, r2) is not possible.

(5) The power of the step~down procedure does not seem to be an increasing
function of "1 i; the range 0.0 to 1.6, for evéry fixed value of u2 > 0.

Conclusion: From the results of the simulation study it may be concluded that
if there is an a priori ordering among the response variables tlien the step-down
procedure may be used in place of Hotelling's Tz-test. If the levels of the
component tests are equal then the power function of the step-down procedure is
not very different from that of Tz-test. But by taking the level of the first

component test o large, i.e., r. 1large, the power of the step-down method in

1
detecting the significance of M can be substantially increased over the
corresponding power of the Tz-test.

This conclusion is supported by our earlier work on the multiple comparisons
associated with the step-down procedure (Mudholkar and Subbaiah 1975, 1976). There
we observed that the confidence intervals for the means of the variables appearing
earlier in the step-down sequence are shorter than the corresponding widths

associated with the Tz-test, or the largest root test in case of MANOVA.

In summary, when the variables in a multiresponse experiment are of unequal

practical significance, and are ordered accordingly, a step-down analysis seems to




s b

10

yield superior inferences on the earlier variables at the expense of the quality

of the inferences on the later variables, as compared with the corresponding

inferences obtained using conventional methods such as Hotelling's T2

Acknowledgments. The authors are thankful to the referees, the Associate

Editor, and the Editor for their comments and suggestions.
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1. CORRESPONDENCE BETWEEN ri's AND

sets of (rl,rz)

(10,1) (4,1) (2,1) (1,1) (1,2) (1,4 (1,10) | 4

.0402

.0456

.0253  .0336

.0170

@, ..0091 .0080 .0067 .0050 .0034 .0020 .0009 1 ]
a=.01 1 : |
@, .0009 .0020 .0034 .0050 .0067 .0080 .0091 |
a, .0456 .0402 .0336 .0253 .0170 .0102 .0046 | ]
a=,08 : :
| 4
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a = ,01 and .05

1.3 .99 .999 .999 1.00 1.00 1.00 To0 1.00°
1.0 .95 .966 .976 .989 .99 500 1.00 1.00
0.7 .732 .742 .806 .895 ooi .968 .998  1.00
u, 0.5 .43 .451 .564 92 689 .920 .994 .99
0.3 .181  .197 “wwm .291 .548 .882 .989 .999
0.1 .063 O7® 063 .206 .466 .851 .985 .998
0.0 %0 .o14 .05 .195 .45 .846 .984 .98

0.0 0.1 0.3 0.5 0.7 1.0 1.3 1.5

"1

a: Below diagonal elements correspond to a = .0l and above diagonal elements correspond to = .05 .
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i 3. THE POWER FUNCTION OF THE STEP-DOWN PROCEDURE ESTIMATED FROM
: THE MONTE CARLO EXPERIMENT OF SECTION 4
o =.01, = (10,1) i
‘ 1.5 .987 .985 .979 .975 .984 .998 1.00 1.00
? 1.3 .926 .924 .916 .909 .938 .990 1.00 1.00
i 1.0 .648 .648 .650 .697 .8l11 .962 .999 1.00
| . M, 0.7 .246 .257 .282 .422 .660 .935 .997 .999
0.5 .085 .087 .148 .333 .607 .922 .997 1.00
0.3 .015 .027 .099 .282 .609 .931 .996 1.00
0.1 .013 .021 .092 .260 .580 .930 .995 .999
0.0 .0l1 .06 .080 .277 .585 .929 .996 .999
04 4% UES 6k B oib 14 L8
,, g
3
‘ 4. THE POWER FUNCTION OF THE STEP-DOWN PROCEDURE ESTIMATED FROM -
THE MONTE CARLO EXPERIMENT OF SECTION 4
4 a=.01, r= (1,1
L
é 1.5 .998 ° .997 .997 .995 .995 .998 1.00 1.00
1.3 .981 .985 .980 .966 .976 .996 .999 1.00
1.0 .863 .860 .843 .835 .878 .965 .998 .999 W
M 0.7 .479 .485 .479 .530 .672 .924 .993 .998
0.5 .203 .209 .217 .349 .562 .893 .993 1.00

0.3 .043 .059 .1l07 .244 .531 .889  .992 . 999
0.1 .017 .019 .066 .204 .490 .883 .991 .998

0.0 .01l .010 .059 .208 .495 .885 «990 .999

0.0 0.1 0.3 0.5 0.7 1.0 1.3 1.5

1




iy

5.

THE POWER FUNCTION OF THE STEP-DOWN PROCEDURE ESTIMATED FROM

105

1.3

1.0

0.7

0.5

0.3

0.1

.THE POWER FUNCTION OF THE STEP-DOWN PROCEDURE ESTIMATED FROM

1.0

0.7

0.5

0.3

0.1

0.0

THE MONTE CARLO EXPERIMENT OF SECTION 4

1.00
.991
.910
.566
.270
.068
.017

.009

0.0

THE MONTE CARLO EXPERIMENT OF SECTION 4
r = (10,1)

.983
.868
.494
.227
.076
.055

.051

0.0

1.00
.991
.903
.571
274
.075
.015

.008

001

. 986

.870

.510

.252

.102

.082

. 070

0.1

a = .05,

e = .01' r= ‘1)10)

.997  .995 .994
.986 .971 .965
.884 .846 .844
.540 .527 .557
.249 .291 .397
.093 .144 .304
.028 .085 .273

.024 .079 .275

0.3 0.5 0.7

o1

.988 .987 .995
.884 917" .968
.577 .741 .898
.374 .636 . .860
.279 .554 .845
.239 .531 .832

232 .548 .831

0.3 0.5 0.7

.995

.984

<916

.805
.739
.702
.692

. 708

1.0

1.00
.997
.990
.987
.990
.986

.987

1.0 °

.999

.996

.983

«957

.955

.954

.949

.943

1.3

1.00

1.00

1.00

1.00

.999

1.00

1.00
.999
.997
.993
.993
.991
.999

.989

1.5

15




7. THE POWER FUNCTION OF THE STEP-DOWN PROCEDURE EXTIMATED FROM

THE MONTE CARLO EXPERIMENT OF SECTION 4

a=,05 r=(1,1)

999 .997 .999

.971 .985

.969

.771

.914

.831

.507 .674

.843

.295 .507 .786

.197  .435 .757

0.0 .052 .060 .182 -457 .757 .975 1.00

0.3 0.7

0.5

8. THE POWER FUNCTION OF THE STEP-DOWN PROCEDURE ESTIMATED FROM

THE MONTE CARLO EXPERIMENT OF SECTION 4

a= .05 r= (1,10)

.999 .997 .999

977 .966 .974
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